Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The diffusion doping of Cu crystals with 0.1 at.% In at high annealing temperatures for surface segregation measurements

Identifieur interne : 000364 ( Main/Repository ); précédent : 000363; suivant : 000365

The diffusion doping of Cu crystals with 0.1 at.% In at high annealing temperatures for surface segregation measurements

Auteurs : RBID : Pascal:13-0284997

Descripteurs français

English descriptors

Abstract

In order to study the segregation of In in polycrystalline Cu crystals the Cu was doped with a low concentration of In. Due to the very low melting point of In the electron evaporated In layer was covered with a Cu layer to prevent the melting of the In layer during the high temperature annealing process in which the Cu was diffusion doped with In. The In/Cu thin layers were characterized with X-ray diffraction (XRD) and Auger electron spectroscopy. The XRD data and the Auger depth profiles illustrated a CuxIny phase formation and segregation of In to the surface of the In/Cu layers during the heat treatments. The formation of a CuxIny phases (with a higher melting points than pure In) in the In/Cu thin layers corresponds to a change in the melting point of the system from that of pure In (156.6 °C) to that of the CuxIny phase with a much higher melting point. It was found that the use of phase transition in the In/Cu thin layers is a promising method to dope Cu crystals with In (≃0.1 at.%) at higher annealing temperatures without melting the In or CuxIny phases. The method was further verified by doping the Cu crystals with a low concentration of In (≃0.1 at.%). It was observed that the In segregated to the surface when the In doped Cu crystal was annealed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0284997

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The diffusion doping of Cu crystals with 0.1 at.% In at high annealing temperatures for surface segregation measurements</title>
<author>
<name sortKey="Madito, M J" uniqKey="Madito M">M. J. Madito</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of the Free State, P.O. Box 339</s1>
<s2>Bloemfontein 9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Afrique du Sud</country>
<wicri:noRegion>Bloemfontein 9300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swart, H C" uniqKey="Swart H">H. C. Swart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of the Free State, P.O. Box 339</s1>
<s2>Bloemfontein 9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Afrique du Sud</country>
<wicri:noRegion>Bloemfontein 9300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Terblans, J J" uniqKey="Terblans J">J. J. Terblans</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of the Free State, P.O. Box 339</s1>
<s2>Bloemfontein 9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Afrique du Sud</country>
<wicri:noRegion>Bloemfontein 9300</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0284997</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0284997 INIST</idno>
<idno type="RBID">Pascal:13-0284997</idno>
<idno type="wicri:Area/Main/Corpus">000869</idno>
<idno type="wicri:Area/Main/Repository">000364</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AES</term>
<term>Annealing temperature</term>
<term>Copper</term>
<term>Depth profiles</term>
<term>Diffusion</term>
<term>Doping</term>
<term>Heat treatments</term>
<term>Indium</term>
<term>Melting points</term>
<term>Phase transitions</term>
<term>Polycrystals</term>
<term>Surface segregation</term>
<term>Thermal annealing</term>
<term>Thin films</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diffusion(transport)</term>
<term>Dopage</term>
<term>Température recuit</term>
<term>Recuit thermique</term>
<term>Ségrégation surface</term>
<term>Point fusion</term>
<term>Diffraction RX</term>
<term>Spectrométrie Auger</term>
<term>Profil profondeur</term>
<term>Traitement thermique</term>
<term>Transition phase</term>
<term>Indium</term>
<term>Couche mince</term>
<term>Cuivre</term>
<term>Polycristal</term>
<term>In</term>
<term>6835F</term>
<term>6855L</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to study the segregation of In in polycrystalline Cu crystals the Cu was doped with a low concentration of In. Due to the very low melting point of In the electron evaporated In layer was covered with a Cu layer to prevent the melting of the In layer during the high temperature annealing process in which the Cu was diffusion doped with In. The In/Cu thin layers were characterized with X-ray diffraction (XRD) and Auger electron spectroscopy. The XRD data and the Auger depth profiles illustrated a Cu
<sub>x</sub>
In
<sub>y</sub>
phase formation and segregation of In to the surface of the In/Cu layers during the heat treatments. The formation of a Cu
<sub>x</sub>
In
<sub>y</sub>
phases (with a higher melting points than pure In) in the In/Cu thin layers corresponds to a change in the melting point of the system from that of pure In (156.6 °C) to that of the Cu
<sub>x</sub>
In
<sub>y</sub>
phase with a much higher melting point. It was found that the use of phase transition in the In/Cu thin layers is a promising method to dope Cu crystals with In (≃0.1 at.%) at higher annealing temperatures without melting the In or Cu
<sub>x</sub>
In
<sub>y</sub>
phases. The method was further verified by doping the Cu crystals with a low concentration of In (≃0.1 at.%). It was observed that the In segregated to the surface when the In doped Cu crystal was annealed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>542</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The diffusion doping of Cu crystals with 0.1 at.% In at high annealing temperatures for surface segregation measurements</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MADITO (M. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SWART (H. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TERBLANS (J. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of the Free State, P.O. Box 339</s1>
<s2>Bloemfontein 9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>186-191</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000501509380310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0284997</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to study the segregation of In in polycrystalline Cu crystals the Cu was doped with a low concentration of In. Due to the very low melting point of In the electron evaporated In layer was covered with a Cu layer to prevent the melting of the In layer during the high temperature annealing process in which the Cu was diffusion doped with In. The In/Cu thin layers were characterized with X-ray diffraction (XRD) and Auger electron spectroscopy. The XRD data and the Auger depth profiles illustrated a Cu
<sub>x</sub>
In
<sub>y</sub>
phase formation and segregation of In to the surface of the In/Cu layers during the heat treatments. The formation of a Cu
<sub>x</sub>
In
<sub>y</sub>
phases (with a higher melting points than pure In) in the In/Cu thin layers corresponds to a change in the melting point of the system from that of pure In (156.6 °C) to that of the Cu
<sub>x</sub>
In
<sub>y</sub>
phase with a much higher melting point. It was found that the use of phase transition in the In/Cu thin layers is a promising method to dope Cu crystals with In (≃0.1 at.%) at higher annealing temperatures without melting the In or Cu
<sub>x</sub>
In
<sub>y</sub>
phases. The method was further verified by doping the Cu crystals with a low concentration of In (≃0.1 at.%). It was observed that the In segregated to the surface when the In doped Cu crystal was annealed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H35F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Ségrégation surface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Surface segregation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Point fusion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Melting points</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectrométrie Auger</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>AES</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Profil profondeur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Depth profiles</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>6835F</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>6855L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0284997
   |texte=   The diffusion doping of Cu crystals with 0.1 at.% In at high annealing temperatures for surface segregation measurements
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024